How antiferromagnetism drives the magnetization of a ferromagnetic thin film to align out of plane.

نویسندگان

  • Bo-Yao Wang
  • Jhen-Yong Hong
  • Kui-Hon Ou Yang
  • Yuet-Loy Chan
  • Der-Hsin Wei
  • Hong-Ji Lin
  • Minn-Tsong Lin
چکیده

Interfacial moments of an antiferromagnet are known for their prominent effects of induced coercivity enhancement and exchange bias in ferromagnetic-antiferromagnetic exchange-coupled systems. Here we report that the unpinned moments of an antiferromagnetic face-centered-cubic Mn layer can drive the magnetization of an adjacent Fe film perpendicular owing to a formation of intrinsic perpendicular anisotropy. X-ray magnetic circular dichroism and hysteresis loops show establishment of perpendicular magnetization on Fe/Mn bilayers while temperature was decreased. The fact that the magnitude of perpendicular anisotropy of the Fe layer is enhanced proportionally to the out-of-plane oriented orbital moment of the Mn unpinned layer, rather than that of Fe itself, gives evidence for the Mn unpinned moments to be the origin of the established perpendicular magnetization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interlayer exchange coupling in perpendicularly magnetized synthetic ferrimagnet structure using CoCrPt and CoFeB

Interlayer exchange coupling in synthetic ferrimagnet structures consisting of perpendicularly magnetized CoCrPt and in-plane magnetized CoFeB layers, which are coupled by a Ru thin spacer, were investigated. The magnetization of the CoFeB layer turned perpendicular to the film plane after annealing at 300°C because of the appearance of interlayer coupling from the CoCrPt layer. The coupling va...

متن کامل

On the reorientation transition of ultra–thin Ni/Cu(001) films

The reorientation transition of themagnetization of ferromagnetic films is studied on amicroscopic basis within aHeisenberg spinmodel. Using a modified mean field formulation it is possible to calculate properties of magnetic thin films with non–integer thicknesses. This is especially important for the reorientation transition in Ni/Cu(001), as there the magnetic properties are a sensitive func...

متن کامل

Electric field control of magnetization reorientation in Co/Pb (Mg1/3Nb2/3)-PbTiO3 heterostructure

Herein, we demonstrated an apparent electric field control of magnetization reorientation at room temperature, through a strain-mediated magnetoelectric coupling in ferromagnetic/ferroelectric (FM/FE) multiferroic heterostructure. As the applied electric field increased, the magnetization tended to deviate from the original direction, which was induced by nonlinear strain vs electric-field beha...

متن کامل

Spin–orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy

As an in-plane charge current flows in a heavy metal film with spin-orbit coupling, it produces a torque on and thereby switches the magnetization in a neighbouring ferromagnetic metal film. Such spin-orbit torque (SOT)-induced switching has been studied extensively in recent years and has shown higher efficiency than switching using conventional spin-transfer torque. Here we report the SOT-ass...

متن کامل

In- and out-of-plane magnetization profile in thin films and multilayers

Nanostructured magnetic materials are extensively studied for their unusual properties and applications, in particular in the field of magnetic recording and spintronics. The current magnetic devices consist of complex stacks of multi-element magnetic thin films with thicknesses on the nanometer scale. Their magnetic properties or their functionality depend crucially on the structure of the sta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review letters

دوره 110 11  شماره 

صفحات  -

تاریخ انتشار 2013